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Helicopter and tilt-rotor blade manufacturers are incorporating fibrous

composite materials into their current designs as a means of reducing weight,
vibrations, and costs and controlling vibrations. In a very general sense, a
composite tilt-rotor blade can be described as an elastic beam that exhibits

generally anisotropic behavior, where it's outer shape is generated by

rotating a nonhomogeneous irregular cross section about an initial twist axis

(see Fig. ]). The line of centroids does not lie on this axis, instead it

can be a helix. Thus, the application of a simple extension (centrifugal)
load can result in bending and either unwinding or further twisting of the

blade section depending upon the definition of the material properties,

section profile, and the location of the initial twist axis. NASA engineers
are currently trying to exploit this characteristic, by designing blades that

will deform (bend and twist) into the optimum aerodynamic shape for each

operating condition (take-off, hover, cruise, etc.) by simply changing the
rotational speed of the rotor (i.e.; change the centrifugal force
distribution).

Previous research studies have only investigated isotropic pretwisted
bars with simple (circular or e11iptical) cross sections and have used either

a three-dimensional elasticity approach or have tried to approximate the

coupling effects using simple technical beam theories. The elasticity-based
solutions clearly show the need for three displacement functions that

describe the local in-plane and out-of-plane deformations of the cross
section. Numerical results have shown that the application of an extension

(centrifugal) force to a pretwisted bar will untwist the bar if the initial

twist axis and centroidal axis are aligned, but if the initial twist axis and
centroidal axis are not aligned, then the bar may either untwist or further

twist depending upon the initial twist axis location, cross section shape,
and Poisson's ratio.

The objective of my summer project was to develop an analytical model to

study the extension-bend-twist coupling behavior of an advanced composite

helicopter or tilt-rotor blade. The outer surface of the blade is defined by
rotating an arbitrary cross section abotlt an Initial twist axis. The cross

section can be nonhomogeneous and composed of generally anisotropic
materials. The r_odel is developed based upon a three dimensional elasticity

approach that is recast as a coupled two-dimensional boundary value problem
defined in a curvilinear coordinate system. Displacement solutions are
written in terms of known functions that represent extension, bending, and
twisting and unknown functions for local cross section deformations

(generalized warping). The unknown local deformation functions are

determined by applying the prlnciple of minimum potential energy to the
discretized two-dimensional cross section. This is an application of the

Ritz method, where the trial function family is the displacement field

associated with a finite element (8-node isoparametrlc quadrilaterals)
representation of the section.
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A computer program was written where the cross section is discretized

into 8-node quadrilateral subregions. The material properties for each

subregion can be generally anisotropic or laminated composite. The linear

matrix equations For each subregion are assembled into a complete cross

section representation and solved using standard finite element procedures.
Solutions For the local deformations are determined for each of the load

conditions (extension, torsion, bending) separately. The extension-bend-

twist coupling constants are calculated by substituting the displacement

solutions into the cross section equations of equilibrium, and performing the
necessary numerical integration (Gaussian Quadrature) over the cross section.

Initially the program was verified using previously published results
(both three-dimensional elasticity and technical beam theory) for pretwisted
isotropic bars with an elliptical cross section. The calculated local

section deformation distributions of the pretwisted bar are composed of
coupled in-plane and out-of-plane behavior described by combined Poisson-type

contractions, anticlastic surfaces, and torsion-type warping. The current
model is in excellent agreement with the published solutions showing torsion

stiffness increases, extension stiffness decreases, and maximum negative
extension-torsion coupling for pretwisted bars where the initial twist axis
and the centroidal axis are coincident. As the initial twist axis is offset

from the centroid, the coupling changes sign from negative to positive thus
the bar undergoes Further twisting, instead of untwisting, for applied
extension.

In addition, solid and thln-wall multi-cell NACA-OOI2 airfoil sections

were analyzed (Fig. 2) to illustrates the pronounced effects that pretwist,

initial twist axis location, and spar location has on coupled behavior. For
moderate levels of pretwist, a solid section has decreased extension

stiffness and increased torsion stiffness, whereas certain thin-wall
configurations undergo a reduction in both extension and torsion stiffness

due to in-plane section deformations that reduce the section planform (Figs.
3,4). Locating the initial twist axis at the centroid maximizes both the

extension stiffness and the negative extension-torsion coupling, whereas

locating the axls near the quarter chord eliminates the coupling and locating
it outside of this region Introduces positive coupling and further reduces
the extension stiffness (Figs. 5,6).

Currently, a series of advanced composite airfoils are being modeled in

order to assess how the use of laminated composite materials interacts with
pretwist to alter the coLlpling behavior of the blade. These studies will
investigate the use of different ply angle orientations and the use of
symmetric versus unsymmetric laminates.

Future issues that need to be addressed and can be studied with this

current model include: l.) improvement of existing technical beam theory
approaches by including the local coupled in-plane and out-of-plane section

deformations, 2.) assessment of the local deformation behavior on the dynamic
characteristics (stability) of the blade, and 3.) Structural and aeroelastic
"tailoring" of the blade structural geometry (wall, spar and ply thickness

and ply orientation) for "zero coupling" For constant speed rotors and
"maximum coupling" For variable speed (tilt-rotors).
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thlck,ess equal to .OI2c; (a.) solid section using 210 elements,
(h.) single cell having 160 elements, {c.) do_d)le-cell with 180
eleme,ts, and (d.) triple-cell using 200 elements.
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Figure 3 Extension stiffness for pretwtsted NACA-O01_ airfoil sections
with the tnlttal twist axis located at the section centrotd.
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Figure 6 Extension-torsion co,pllng of I NACA-0012 atrfotl section (oc-.30)
where the Initial t*lst axis Is offset along the chord-wise axis
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